Thursday, November 8, 2012

How do we use complex conjugate to divide imaginary numbers?

How do we use complex conjugate to divide imaginary numbers?

To divide imaginary numbers you write the quotient as a fraction and divide the numerator and the denominator  by the conjugate of the denominator. 

The complex conjugate of (a+bi) is (a-bi)

Note you just change the sign in the middle. 

Example:
(1-2i)/ (3+i)
-First, find the complex conjugate of the denominator 
-Complex conjugate of (3+i) is (3-i)
-Next multiply both numerator and denominator by (3-i)
-If you foil (1-2i) and (3-i) you get 1-7i
-If you foil (3+i) and (3-i) you get 10
-Your final; answer is 1-7i/10


    

*Note i x i= i^2= -1


How to foil?

No comments:

Post a Comment